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Abstract-The research goal was to engineer agent
collectives that most effectively accomplish a cooperative
gathering task. In view of this, we compared reproduction
schemes for the artificial evolution of agent controller
parameters for a cooperative minesweeping task. Agents
utilized cooperative behavior to improve task performance
in a simulated environment where different types of mines
with different fitness rewards were randomly distributed.
We compared the evolution of agent controller parameters
with respect to temporal and spatial dimensions of agent
reproduction schemes. The first dimension concerned
agents reproducing only once at the end of their lifetime or
multiple times during their lifetime. The second dimension
concerned agents reproducing only with agents in adjacent
positions (locally restricted) or with agents located
anywhere else in the environment (panmictic). Results
indicated that the single reproduction at the end of an
agent's lifetime and the locally restricted reproduction
schemes afforded the agent collective a higher level of
performance in its cooperative gathering task.

Index Terms - Emergence, cooperative behavior, artificial
evolution.

I. INTRODUCTION
The research theme of this paper is described by the term:

Emergent Collective Intelligence (ECI). The end goal of ECI
research is to combine and exceed achievements in multi-agent
systems, swarn intelligence, and evolutionary computation
research via developing synthetic methodologies such that
groups of computationally complex agents produce desired
emergent collective behaviors resulting from the bottom-up
development of certain individual properties and social
interactions. This paper investigates certain technical aspects
of artificial evolution as means of achieving adaptability at the
local level and desired emergent behavior at the global level.

The applications we envision include engineering tasks. For
example, in social robotics, the individuals are robots that have
to perform certain tasks collectively. In such a group,
individuals can be relatively simple but adaptive, where it is
the group as a whole that develops the ability to carry out
complex collective tasks in unknown environments. We

proclaim that adaptability at the local level is attainable by
means of an evolutionary process. The technical research goal
of this paper was to establish what types of agent reproduction
mechanisms operating within an artificial evolution process
lead to good solutions for multi-agent task accomplishment.

Our application domain is the gathering of renewable
resources from a virtual environment. This gathering task is
divided into locating, retrieving, and transporting the
resources in question. It is an essential assumption that this
task is interfaced to the population of agents via fitness
rewards that are given after delivering the resources to a given
'home area'. Additionally, we distinguish resources with
different values and postulate that gathering of higher value
(more complex) resources necessitates a higher degree of
cooperative behavior (more agents). The performance
evaluation criterion for the agent collective as a whole is then
the total value gathered cooperatively, measured at the final
generation of the simulation.

In this case the task was to locate, extract and transport
different types of mines within an artificial mine field, where
cooperative behavior was needed for 'good' solutions. A good
solution refers to maximizing the value of mines extracted and
transported within a given time period. A mines value was
determined by its complexity and hence how difficult it was to
disable, extract and transport. We investigated two dimensions
of agent reproduction. First, temporal reproduction settings,
termed: Single Reproduction at the End of the Agent's Lifetime
(SREL) and Multiple Reproductions During an Agent's
Lifetime (MRDL). Second, spatial reproduction settings,
termed: locally restricted reproduction and panmictic
reproduction. In the SREL reproduction setting agents
reproduce only at the end of their lifetimes, and in the MRDL
reproduction setting agents were able to reproduce multiple
times during their lifetime. Using the locally restricted spatial
reproduction setting an agent was only able to reproduce with
other agents situated in adjacent positions in the environment.
Where as, using the panmictic reproduction setting agents were
able to reproduce with other agents situated anywhere in the
environment.

The key research question addressed within this paper is to
determine which combination of the temporal and spatial
reproduction setting, that is, which of four possible schemes,
leads to superior performance with respect to the agent
collective accomplishing its task. The task of each agent was
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to locate, extract, and transport as high a value of mines as
possible to a 'home' area in the environment. The successful
delivery of a mine to the home area was termed gathering,
where gathered mines were equated with a fitness reward.
Fitness rewards were proportional to the type and amount of
mines gathered. Gathering of higher value (more complex)
mines necessitated a higher degree of cooperative behavior
(more agents) to extract. Two quality measures were used as
the evaluation criteria for the evolved behavior of the agent
collective. The first was the total value gathered cooperatively.
This measure was taken at the final generation of the
simulation, where the highest possible values could only be
attained if the agents worked cooperatively to accomplish the
mine gathering task. The second quality measure was the
stability of the agent collective, which was number of
simulation runs in which all agents survived until the final
generation of the simulation.

II. LITERATURE REVIEW

The study of the synthesis of collective behavior, including
the emergence of cooperation, has been investigated in both
simulated [1], [2], [3], [4], [12], [15] and real world [5], [6],
[7], [17], [21], [18] problem domains. Traditionally collective
behaviors in agent collectives (multi-agent systems) have been
studied using a top down classical approach [10], [16]. Such
approaches have achieved limited success given that it is
extremely difficult to specify the mechanisms for cooperation
or collective intelligence in all but the simplest problem
domains. The utilization of evolutionary computation as a
mechanism for agent controller design such that the local
interactions of many controllers produce a desired collective
behavior, has been highlighted as a promising area of research
[13], [14]. This is especially true in large agent collectives,
which potentially contain thousands of individuals.

Within simulated agent collectives there has been a
significant concentration of research on the study of emergent
behavior in artificial ant colonies [6], [7], [8], [9], [22].

Drogoul et al. [8], [9] presented a simulation model of
social organization in an ant colony termed: MANTA (Model of
an ANT-hill Activity), which was designed to explore the
contribution of emergent functionality such as division of labor
on emergent cooperation. Results elucidated that emergent
division of labor improved the efficiency of emergent
functionality in the population. Such emergent functionality
included cooperative foraging and sorting behavior. The
authors concluded that many of the behaviors viewed as
cooperative emerged as a result of the competitive interaction
that occurs between individuals in a constrained environment
with limited resources.

Perez et al. [22] conducted experiments in the context of an
artificial evolution process, in order to study the impact of
genetic relatedness and different types of genetic selection in
the evolution of cooperation for a foraging task. The
transportation of certain large food items required that two ants
cooperate in order to achieve the task. Artificial ants were
rewarded differing fitness scores for either individual or

performance of the colony was maximized if ants
cooperatively transported food items as opposed to acting
individually. In the experimental setup, groups of ants tested
were either homogenous or heterogeneous, where the method
of genetic selection, which either reproduced the next
generation via selecting individuals from different colonies or
via selecting different colonies as a whole, delineated
homogenous and heterogeneous colonies. Results indicated
that the colony-based form of genetic selection and
reproduction favored emergent cooperative behaviors, and that
cooperative behavior had a low probability of emerging in
heterogeneous colonies, where an individual-based form of
genetic selection and reproduction was used.

Nolfi et al. [19] conducted several experiments to address
the problem of how a group of simulated robots (s-bots) could
coordinate their movements and actions so as to cooperatively
move objects in the environment as far as possible within a
given period of time. Nolfi et al. [20] conducted a set of
experiments designed to facilitate emergent cooperative
behavior, where a group of eight s-bots were connected to an
object, or connected so as to form a closed structure around an
object, and were given the task of moving the object as far as
possible in the least amount of time. In a set of experiments the
eight s-bots used what the authors termed the ant formation,
which connected all s-bots to the object, but there were no
links between the s-bots themselves. The result was dependent
upon the weight of the object, such that the s-bots
cooperatively negotiated to either push or pull the object to
their destination.

From this overview of different research efforts, associable
by gathering and transportation tasks and the general research
topic of emergent cooperation, it is clear that some
formalization of mechanisms for the design and analysis of
emergent cooperation is needed. Specifically, if emergent
cooperative behavior in agent collectives was sufficiently
understood, purposeful design of cooperative behavior could
be applied to benefit a variety of applications in social robotics
including resource mining, transportation, surveillance,
construction, and mine sweeping [5].

III. AGENTS, ENVIRONMENT AND EVOLUTION

A. The Agent Collective and their Task Environment
The experiments utilized a simulated minefield and an

initial population of 1000 agents, placed at random positions
on a grid-cell environment with a 50 x 50 resolution. A
maximum of four agents could occupy any given grid-cell
within the environment. A home area spanning 4 x 4 grid-cells
was randomly placed within the environment. In the simulated
environment the resources to be cooperatively gathered were
mines, and the home area was where gathered mines were
taken. Gathering was the term applied to the process of
locating, extracting, transporting, and delivering a mine to the
home area. Within the simulated minefield there were three
types of mines: type A, type B and type C. The different types
of mines had differing values to reflect the difficulty (degree of
cooperation) associated with gathering it.

cooperative transportation of food items, such that the total
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The cost of gathering mines comprised two sub-costs: the
cost of extracting a mine from its location in the environment,
and the cost of transporting a mine to the home area. The
costs of extracting and transporting one unit of each of the
three mine types are presented in table 1. The transport cost
was applied per unit being transported, and per grid-cell
traversed. Initially, a quantity of between 0 and 3 mines of
each type were randomly initialized and placed within each
grid-cell. It is assumed that a long-term process of gathering
and replenishment in a minefield is being simulated, where
mines are considered a renewable resource, and each mine
type is renewed at a rate of 3 per simulation iteration. That is,
the simulation is of a long-term process of collective gathering
behavior being evolved, whilst an unseen competitor renews
gathered mines. Additionally, it is assumed that an agent
never triggered a mine to detonate.

In order to gather the different mine types a degree of
cooperative behavior was necessitated. Cooperation was
necessary when at least one agent was attempting to extract a
given mine type, and the value of the prevalent agent
controller parameter was too low for the agent to individually
gather the mine. These prevalent agent controller parameters
were termed: Mine type A capacity, Mine type B capacity,
Mine type C capacity and transport capacity, and provided an
indication of the capability of an agent for gathering a
particular mine type. Specifically, to gather one unit of a
particular mine type, the sum of the values of the capacity
parameter for that mine type (for all agents simultaneously
attempting to extract the mine) must exceed a given capacity
threshold. These capacity thresholds are presented for each
mine type in table 1. The task of each agent was to gather the
highest possible value of mines during the course of its
lifetime. This task was interfaced to the agent collective by
providing fitness rewards for gathered mines.

The fitness rewards for gathering one unit of the different
mine types are presented in table 1. The total value of mines
that all agents gathered in cooperation with at least one other
agent during the course of its lifetime was termed the value
gathered cooperatively. Further to playing its conventional role
in survivor selection, fitness was also used as a metaphor of
energy (actions cost fitness). An agent was able to move one
grid-cell in any direction per simulation iteration at a cost of
one unit of fitness.

B. Evolution Approach
For the evolution of agent controller parameter values, a

standard evolutionary algorithm was used [11]. When an agent
initiated reproduction, the fittest partner (with the highest
energy) of m potential partner agents was selected for
reproduction. The population initially contained 1000
individuals (agents), and the genotype of each agent was its set
of gathering and transport capacities (evolvable parameters
illustrated in figure 1). These parameter values directly
influenced the heuristic agent lifetime behavior, though the
behavioral heuristics (figure 2) remained static over the course
of the evolutionary process. That is, once an agent had
gathered as many mines as it could transport, it would begin

transporting the mines back to the home area. During
reproduction, agent controller heuristics (figure 2) were copied
from parent to child, and the fitness inherited by a child was
the average fitness of the two parent agents. Ninety percent of
the inherited fitness was then subtracted from each parent's
fitness.

C. Artificial Evolution: Agent Reproduction Scheme
An agent reproduction scheme was devised, in temporal and

spatial terms, by distinguishing when and where agents
reproduced. For the temporal dimension, we tested a setting
termed: Single Reproduction at the End of the Agent's Lifetime
(SREL). For the spatial dimension, we tested a setting termed:
locally restricted. That is, agents reproduce only with agents in
adjacent positions. According to previous results' this agent
reproduction scheme was found to yield superior performance
in collective gathering tasks, comparative to other reproduction
schemes using different temporal and spatial settings. For
example: multiple reproductions during an agent's lifetime,
and panmictic reproduction.

During the reproduction action, 90% of the fitness of two
parent agents was divided amongst and passed onto p offspring
agents. During reproduction only one partner agent of m
potential partner agents was selected for reproduction. An
agent's fitness could only be replenished when it delivered a
mine to the home area. The precondition for locally restricted
reproduction setting was that there was at least one potential
partner agent in the same grid-cell or an adjacent grid-cell.
Reproduction was only possible when both parents current
fitness was greater than the value of the min fit reproduction
parameter'.

When p offspring agents were produced using the panmictic
reproduction setting, each offspring would be placed in a
random free grid-cell adjacent to one of the parents. The
chance that an offspring an agent was placed in a grid-cell
adjacent to parent 1 was 0.5, and the chance that an offspring
was placed in a grid-cell adjacent to parent 2 was 0.5. If no
adjacent grid cells were free, then the offspring agent died.
Using the locally restricted setting offspring agents were
always placed in a random free grid-cell adjacent to the parent
agent that initiated reproduction.

The number of offspring to be produced was determined
as m = the total amount of fitness to be inherited (x) divided by
10. According to the reproduction scheme setting being used,
pairs of agents produced p offspring using the genetic
operations of crossover and mutation [11]. The core of agent
reproduction was the application of uniform crossover to
'recombine' the controller parameters: mine type A, B, C and
transport capacities of two parent agents in order to derive the
agent controller parameter values of a child agent. The
uniform crossover operator selected a parameter value to be
inherited from either parent agent with a 0.5 probability. Child
controller parameter values were mutated by a value of either
plus or minus 10 with a probability of 0.05.

1 References to previous work by the authors were omitted for the purposes
of a blind review.
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Value Ra%w initial Mhinimunmto
Maximum

Paautwers: NotEvoh-abh

SIht 1 I
Dahia Ane [20. 100) [20-100]
Min Fit Reorodwtion 50 50

Paraaeters Evuhrabe

MihTypeA Capwtty (CA) [0 100] [0 infinity]
Mi TpeB Cpacity (CSB) 0. 100] [0-ininty]
MlS Type C Capacty(CC) [0 10) (0 I-nfnty)
TranprtC9 city (C) [.0300] (0-InfiYnty]

Fig. 1. The evolvable and non-evolvable agent controller parameters.

IF AmAM CATHEN
IF (Holdng + AmA) < CT THEN extactAmA
ELSEIFAmB< CBTHEN

IF (Holding+ AmB) <CT THEN extract AmB
ELSE IF AmC < CC THEN

IF (Holding + AmC ) < CT THEN extract AmC
ELSE Look-Ahead

Look-Ahead:
IF end of life and SREL active THEN reproduce
IF at homeTHEN unload mines transpoated
IF MRDL active THEN reproduce

I transporting a quantity of mines THEN move to hcme
ELSE IF mine type A detected THEN move to mine type A
ELSE IF mine type B detected THEN move to mine type B
ELSE IFl mine type C detected THEN move to mine type C
ELSE move to a randorn cell

Fig. 2. Heuristics utilized by agents operating under the pure-
evolution approach. AmA, AmB, and AmC denote the amount of mine
type A, B and C, respectively, on a given grid-cell. Holding denotes
the current amount of all mine types a given agent is currently
transporting. CA, CB, CC and CT, denote the gathering capacities for
mine types A, B, and C, and the transport capacity, respectively.

Capacity Extraction Transport Fitness
Threshold Cost Cost Reward

Mine type A 300
Mine type B 150

Mine type C 75

8 0.04
4 0.02
2 0.01

Table 1. The capacity thresholds, and the costs for extracting and
transporting mines, as well as the fitness reward for gathering one
unit of the different mine types.

If mutation occurred, the probability of adding versus
subtracting 10 from the inherited parameter value was 0.5.

IV. EXPERIMENTATION AND RESULTS
We designed our experiments along two parameter
dimensions. Specifically: Temporal reproduction scheme:
SREL versus MRDL. Spatial reproduction scheme: panmictic
versus locally restricted.

This led to four different experimental setups, where for each
setup we performed 100 independent runs (using different
random initialization parameters), where one run was executed
for 2000 iterations.

Additionally, we conducted a control experiment in which
we fixed the experimental parameters (gathering and transport
capacities) as derived by the evolution experiments, where,
this control experiment served to elucidate the most
appropriate agent controller configuration (parameter values
for gathering and transport capacities) for the given collective
mine sweeping task. Within each simulation, several
experimental monitors were set as objective measures for the
performance of the agent collective across successive
generations of the evolutionary process.

The monitors for the average value gathered cooperatively,
and the number of agents provided the two objective
performance measures for evolved multi-agent system
behaviors. The average fitness of the population and the
average distance to home, describe the average energy level
and population density of the agents, were additional measures
elucidating details of the overall behavior of the agent
collective. As previously stated, cooperative behavior was
evaluated according to the total value of the mine types (A, B,
and C) gathered by the agent collective over the course of a
given simulation. Specifically, the measure of cooperative
behavior was the total value gathered cooperatively, calculated
at the final iteration of the simulation, where cooperative
behavior was required to attain the highest values.

V. ANALYSIS AND DISCUSSION
The objective performance measures for evolved agent

behaviors were the total value ofmines gathered cooperatively
and the stability of the agent collective for a given simulation
run. Table 3 illustrates the average value of mines gathered
cooperatively utilizing each of the four reproduction schemes.
It is important to note that a high standard deviation (the values
in parentheses) was indicative of populations that died out
prematurely with some regularity over the 100 simulation runs
for a given experimental setup. The second performance
measure was the stability of evolved agent behaviors. Here,
the term stability indicates that, for the gathering and transport
parameter values evolved, a particular value gathered
cooperatively (plus or minus some variance) was expected.

For each of the four experimental setups we tested how
optimal the evolved agent controller parameters were via
running four control experiments that used the parameter
values attained (for the gathering and transport agent controller
parameters) at the end of the evolutionary process as fixed
agent controller settings. For each of these four experimental
settings, the control experiments yielded superior performance
according to the total value gathered and system stability
performance measures. These control experiment results thus
indicate that the evolutionary process derived a superior agent
controller parameter configuration (when comparing the SREL
and locally restricted reproduction scheme combination with
other reproduction scheme combinations) for the given agent
collective task.
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average of parent fitness. However, the nature of the SREL
SREL SREL MRDL MRDL setting holds, in that only agents with appropriate controller

Panmictic Local Panmictic Local parameter settings will have survived until the end of their
allotted lifetime (that is, those agents with a high fitness).

Evolution 23.59 (33.37) 39.10(17.20) 32.56(10.00) 22.85(17.60) Table 3 illustrates that the SREL and locally restricted
Control 60.25 (1.85) 70.00 (4.88) 43.04 (5.46) 54.28 (0.63) reproduction scheme was successful in deriving parameter

values with a high stability (low standard deviation)
Table 2. The values attained for the total value gathered comparative to the other reproduction schemes. The efficacy
cooperatively (standard deviations in parentheses) under both the of these parameter values are reflected in the value gathered
agent collective utilizing artificial evolution (Evolution) and the agent cooperatively attained by the SREL and locally restricted
collective utilizing previously evolved agent controller parameter reproduction scheme (presented in table 2).
settings (Control). The upper row at the top of the table refers to the A high standard deviation in the case of the other
temporal reproduction schemes and the second row refers to the
spatial reproduction schemes. Note 'Local' refers to the reproduction schemes indicates that comparatively, theserespatrict reproduction schemes. Note'Local'referstothelocall

schemes were less appropriate for guiding the evolutionary
process in the derivation of agent controller parameter values

SREL SREL MRDL MRDL that produced a relatively high value gathered cooperatively.
Panmictic Local Panmictic Local

VI. CONCLUSIONS
A 2.52 (0.54) 19.67 (2.70) 10.31 (4.66) 17.78 (12.90) Results indicated that an agent collective utilizing the single
B 21.10 (29.95) 38.26 (5.11) 22.43 (4.41) 49.34 (18.48) reproduction at end of lifetime (SREL) and the locally

restricted reproduction scheme combination yielded superior
C 42.24 (58.52) 57.98 (8.23) 74.90 (14.72) 50.03 (30.55) performance in terms of the evaluation criteria defined. The
T 19.45 (26.73) 23.27 (2.64) 18.27 (4.21) 39.61 (4.30) evaluation criteria were defined as the total value of mines

gathered cooperatively, and the stability of the system.
Table 3. Gathering and transport capacities evolved under each of the Evolved agent collective behaviors were able to achieve
four agent reproduction schemes. The notation A, B, C, and T, denote good results, according to the two objective performance
the mine types A, B, C and Transport capacities, respectively. measures defined, as well as in comparison to previous

experimental results. That is, previous experimental results
Table 2 presents the values gathered cooperatively attained used an adaptive (though not evolutionary) agent collective in

for the four agent reproduction schemes. For each scheme, the the same task environment, though inferior results were
values attained in the control experiment are presented below attained, in terms of the same two objective performance
the values gathered cooperatively. The value in parentheses measures. The optimality of the evolved agent controller
presented next to each of the values gathered cooperatively is parameter settings was addressed via implementing a control
the standard deviation. A high standard deviation indicates that experiment that utilized the evolved values as static agent
the agent collective was less stable in its gathering behavior. controller parameters. Agents using these evolved parameter
High standard deviations were the result of many agent values were able to attain a higher level of performance,
populations (of the 100 replications) becoming extinct before according to the evaluation criteria, comparative to the
the end of a simulation. evolutionary process using randomly initialized agent
A low standard deviation indicates a low portion of agent controller parameters and the SREL and locally restricted

populations dying out prematurely and hence a high stability in reproduction schemes.
the gathering task. The control experiments demonstrated that Two future research objectives have been defined based
both the SREL and locally restricted reproduction scheme was upon the results presented in this paper. The first is to further
operating within a region of the parameter space (defined by investigate the optimality of the evolved agent controller
the four agent controller parameters) where a high value parameters via making a comparison with an advanced control
gathered cooperatively was attainable. experiment. Such a control experiment would stochastically

The result of the SREL and locally restricted agent sample thousands of points within the solution space (agent
reproduction scheme being most appropriate for both controller parameter values), and then subsequently test each
approaches is theorized to be consequent of agents only these agent controller parameters for 100 simulation runs to
reproducing at the end of their lifetimes. Using the SREL gather statistics on how the two objective performance
setting, agents that have performed their task well and have measures are addressed. The goal of such an experiment would
thus survived until the end of allotted lifetime, are allowed be to ascertain if evolution discovered an optimal set of agent
reproduce. Given that the reproduction action costs 90% of the controller parameters. Such an experiment would illustrate the
parents' energy, agents using the MRDL setting have less of a efficacy of an artificial evolution process for deriving agent
chance of producing offspring that are well suited to successful controller parameters for a given agent collective task in an
task accomplishment. unknown environment.

Using the heuristic controller, child agents inherit only The second future research objective is to increase the
recombined and mutated agent parameter values and an complexity of the agent controllers and evolutionary process,
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giving agents the capacity to learn during their lifetimes, as
well as evolution of the capacity to modify genotypes based
upon lifetime behaviors (collective or individual). Modifying
the evolutionary process such that a greater part of the agent
genotype is subject to evolution would also likely yield greater
complexity and diversity in emergent behaviors.
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